ggplot2
ggplot2
:- a package for data visualizationggplot2
:- a package for data visualizationggplot2
:- a package for data visualizationggplot2
:- a package for data visualizationggplot()
Core function:- ggplot()
gg
refers grammar of graphics Core function:- ggplot()
gg
refers grammar of graphics ggplot2
is highly modular
Core function:- ggplot()
gg
refers grammar of graphics ggplot2
is highly modular
Core function:- ggplot()
gg
refers grammar of graphics ggplot2
is highly modular
Core function:- ggplot()
gg
refers grammar of graphics ggplot2
is highly modular
almost every little operation that you want to perform has a separate function
like little Lego building blocks that you can snap together
gglpot2
follows layered approachgglpot2
follows layered approach
Layers and design elements are added on top of one another
gglpot2
follows layered approach
Layers and design elements are added on top of one another
Each command for a Layer is added to the previous ones with a plus symbol (+)
gglpot2
follows layered approach
Layers and design elements are added on top of one another
Each command for a Layer is added to the previous ones with a plus symbol (+)
At the end, we have a multi-layer plot object that can be saved, modified, printed, exported, etc.
R Studio
R Studio
R Studio
R Studio
DATAFRAMES
DATAFRAMES
DATAFRAMES
ggplot()
functionggplot()
functionggplot()
functionggplot()
functionggplot()
--
+
ggplot()
functionggplot()
--
+
ggplot()
function, the first parameter is the data
parameterggplot()
function, the first parameter is the data
parameterdata
that we want to visualizeggplot()
function, the first parameter is the data
parameterdata
that we want to visualizeggplot2
works with data.frame
ONLYggplot(data=iris)
ggplot(data=iris)
output
iris %>% ggplot()
iris %>% ggplot()
output
data
data
data
geom_
functiongeom_
functionGEOMS
, all starts withgeoms_
geom_
functionGEOMS
, all starts withgeoms_
geoms
by using +
geom_
functionGEOMS
, all starts withgeoms_
geoms
by using +
geom_
functionGEOMS
, all starts withgeoms_
geoms
by using +
geom_
functionGEOMS
, all starts withgeoms_
geoms
by using +
geom_
functionGEOMS
, all starts withgeoms_
geoms
by using +
DATA PARAMETER
& GEOMS:VISUAL PARAMETERS
DATA PARAMETER
& GEOMS:VISUAL PARAMETERS
DATA PARAMETER
& GEOMS:VISUAL PARAMETERS
DATA PARAMETER
& GEOMS:VISUAL PARAMETERS
aes()
functionaes()
functionaes()
function, basically connects variables in our dataframe to the aesthetic attributes of our geomsaes()
functionaes()
function, basically connects variables in our dataframe to the aesthetic attributes of our geomsdata parameter
and the geom is specified by the geom
that we choose (e.g., geom_line, geom_bar, etc).aes()
functionaes()
function, basically connects variables in our dataframe to the aesthetic attributes of our geomsdata parameter
and the geom is specified by the geom
that we choose (e.g., geom_line, geom_bar, etc).aes()
function is what enables us to connect these two things.ggplot(data = iris , mapping = aes(x = Sepal.Length , y = Sepal.Width))
ggplot(data = iris , mapping = aes(x = Sepal.Length , y = Sepal.Width))
ggplot(data = iris ,mapping = aes(x = Sepal.Length , y = Sepal.Width))+ geom_point()
ggplot(data = iris ,mapping = aes(x = Sepal.Length , y = Sepal.Width))+ geom_point()
aes()
function, we can connect the variables in the dataframe to those aesthetic attributes, which will cause the line to vary on the basis of the underlying data.aes()
function, we can connect the variables in the dataframe to those aesthetic attributes, which will cause the line to vary on the basis of the underlying data.ggplot(data = dummy_data, aes(x = var1, y = var2) + geom_line()
aes()
function, we can connect the variables in the dataframe to those aesthetic attributes, which will cause the line to vary on the basis of the underlying data.ggplot(data = dummy_data, aes(x = var1, y = var2) + geom_line()
color
color
ggplot(data = iris ,mapping = aes(x = Sepal.Length , y = Sepal.Width))+ geom_point(color="red")
color
ggplot(data = iris ,mapping = aes(x = Sepal.Length , y = Sepal.Width))+ geom_point(color="red")
shape
shape
ggplot(data = iris ,mapping = aes(x = Sepal.Length , y = Sepal.Width))+ geom_point(color="red", shape=5)
shape
ggplot(data = iris ,mapping = aes(x = Sepal.Length , y = Sepal.Width))+ geom_point(color="red", shape=5)
shape =
Display a point with geom_point()
as a dot, star, triangle, or square…shape =
Display a point with geom_point()
as a dot, star, triangle, or square…fill =
The interior color (e.g. of a bar or boxplot)shape =
Display a point with geom_point()
as a dot, star, triangle, or square…fill =
The interior color (e.g. of a bar or boxplot)color =
The exterior line of a bar, boxplot, etc., or the point color if using geom_point()
shape =
Display a point with geom_point()
as a dot, star, triangle, or square…fill =
The interior color (e.g. of a bar or boxplot)color =
The exterior line of a bar, boxplot, etc., or the point color if using geom_point()
size =
Size (e.g. line thickness, point size)shape =
Display a point with geom_point()
as a dot, star, triangle, or square…fill =
The interior color (e.g. of a bar or boxplot)color =
The exterior line of a bar, boxplot, etc., or the point color if using geom_point()
size =
Size (e.g. line thickness, point size)alpha =
Transparency (1 = opaque, 0 = invisible)shape =
Display a point with geom_point()
as a dot, star, triangle, or square…fill =
The interior color (e.g. of a bar or boxplot)color =
The exterior line of a bar, boxplot, etc., or the point color if using geom_point()
size =
Size (e.g. line thickness, point size)alpha =
Transparency (1 = opaque, 0 = invisible)binwidth =
Width of histogram binsshape =
Display a point with geom_point()
as a dot, star, triangle, or square…fill =
The interior color (e.g. of a bar or boxplot)color =
The exterior line of a bar, boxplot, etc., or the point color if using geom_point()
size =
Size (e.g. line thickness, point size)alpha =
Transparency (1 = opaque, 0 = invisible)binwidth =
Width of histogram binswidth =
Width of “bar plot” columnsshape =
Display a point with geom_point()
as a dot, star, triangle, or square…fill =
The interior color (e.g. of a bar or boxplot)color =
The exterior line of a bar, boxplot, etc., or the point color if using geom_point()
size =
Size (e.g. line thickness, point size)alpha =
Transparency (1 = opaque, 0 = invisible)binwidth =
Width of histogram binswidth =
Width of “bar plot” columnslinetype =
Line type (e.g. solid, dashed, dotted)axes
, plot titles
etclabs()
function+
just as the geoms
labs()
we can provide character strings to these arguements:x =
and y =
The x-axis and y-axis title (labels)title =
The main plot titlesubtitle =
The subtitle of the plot, in smaller text below the titlecaption =
The caption of the plot, in bottom-right by defaultggplot(data = iris , mapping = aes(x = Sepal.Length, y = Sepal.Width))+ geom_point(color="red", shape=5)+ labs( title = "Sepal width Vs length", subtitle = "Flower of IRIS species", x= "Sepal Length", y= "Sepal Wdith", caption = "A caption here")
ggplot(data = iris , mapping = aes(x = Sepal.Length, y = Sepal.Width))+ geom_point(color="red", shape=5)+ labs( title = "Sepal width Vs length", subtitle = "Flower of IRIS species", x= "Sepal Length", y= "Sepal Wdith", caption = "A caption here")
ggplot2
is quite flexible and a lot of control over the plot we have.ggplot2
is quite flexible and a lot of control over the plot we have.theme()
functionggplot2
is quite flexible and a lot of control over the plot we have.theme()
functionggplot2
is quite flexible and a lot of control over the plot we have.theme()
functiontheme_()
function to make sweeping adjustments - these include theme_classic()
, theme_minimal()
, theme_dark()
, theme_light()
theme_grey()
, theme_bw()
among othersggplot2
is quite flexible and a lot of control over the plot we have.theme()
functiontheme_()
function to make sweeping adjustments - these include theme_classic()
, theme_minimal()
, theme_dark()
, theme_light()
theme_grey()
, theme_bw()
among otherstheme()
catter <- ggplot(data=iris, aes(x = Sepal.Length, y = Sepal.Width)) scatter + geom_point(aes(color=Species, shape=Species)) + labs( title = "Sepal width Vs length", subtitle = "Flower of IRIS species", x= "Sepal Length", y= "Sepal Wdith", caption = "A caption here") + theme_bw()
catter <- ggplot(data=iris, aes(x = Sepal.Length, y = Sepal.Width)) scatter + geom_point(aes(color=Species, shape=Species)) + labs( title = "Sepal width Vs length", subtitle = "Flower of IRIS species", x= "Sepal Length", y= "Sepal Wdith", caption = "A caption here") + theme_bw()
ggplot(data=iris, aes(x = Sepal.Length, y = Sepal.Width)) + geom_point(aes(color=Species, shape=Species)) + labs(title = "theme_bw()",) + theme_bw()
ggplot(data=iris, aes(x = Sepal.Length, y = Sepal.Width)) + geom_point(aes(color=Species, shape=Species)) + labs(title = "theme_classic()",) + theme_classic()
ggplot(data=iris, aes(x = Sepal.Length, y = Sepal.Width)) + geom_point(aes(color=Species, shape=Species)) + labs(title = "theme_bw()",) + theme_bw()
ggplot(data=iris, aes(x = Sepal.Length, y = Sepal.Width)) + geom_point(aes(color=Species, shape=Species)) + labs(title = "theme_classic()",) + theme_classic()
ggplot(data=iris, aes(x = Sepal.Length, y = Sepal.Width)) +geom_point(aes(color=Species, shape=Species)) + labs(title = "theme_minimal()",) + theme_minimal()
ggplot(data=iris, aes(x = Sepal.Length, y = Sepal.Width)) + geom_point(aes(color=Species, shape=Species)) + labs(title = "theme_grey()",) + theme_grey()
theme()
can be also modifiedtheme()
function has a large number of arguments, each of which edits a very specific aspect of the plot.theme()
write the argument name for the plot element you want to edit, like plot.title =
element_()
function to the argumentelement_text()
, but others include element_rect()
for canvas background colors, or element_blank()
to remove plot elementselement_()
function, write argument assignments to make the fine adjustments you desireplot + theme_classic()+ # pre-defined theme adjustments theme( legend.position = "bottom", # move legend to bottom plot.title = element_text(size = 30), # size of title to 30 plot.caption = element_text(hjust = 0), # left-align caption plot.subtitle = element_text(face = "italic"), # italicize subtitle axis.text.x = element_text(color = "red", size = 15, angle = 90), # adjusts only x-axis text axis.text.y = element_text(size = 15), # adjusts only y-axis text axis.title = element_text(size = 20) # adjusts both axes titles )
Keyboard shortcuts
↑, ←, Pg Up, k | Go to previous slide |
↓, →, Pg Dn, Space, j | Go to next slide |
Home | Go to first slide |
End | Go to last slide |
Number + Return | Go to specific slide |
b / m / f | Toggle blackout / mirrored / fullscreen mode |
c | Clone slideshow |
p | Toggle presenter mode |
t | Restart the presentation timer |
?, h | Toggle this help |
Esc | Back to slideshow |