# A tibble: 5 × 28
States CS Rank Rankc HCR CFI GER FLFPR GDP GDP1 EODB UR LFPR
<chr> <dbl> <dbl> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 Andhr… 72 4 Fron… 15.6 87 32.4 0.55 3.84 3.8 52.4 5.7 63.5
2 Aruna… 60 22 Perf… 24.4 68 29.7 0.26 2.52 2.5 0 7.7 44.8
3 Assam 57 26 Perf… 36.2 85 18.7 0.17 5.26 5.3 5.93 7.1 49.4
4 Bihar 52 28 Perf… 52.5 94 13.6 0.06 7.63 7.6 2.78 10.6 41.4
5 Chand… 79 1 Fron… 4.8 77 50.6 0.35 6.11 6.1 0 7.8 54.9
# ℹ 15 more variables: SCSTLA <chr>, RTCSC <chr>, TOTP <dbl>, TOTM <dbl>,
# TOTF <dbl>, P_LIT <dbl>, M_LIT <dbl>, F_LIT <dbl>, TOT_P_U <dbl>,
# TOT_M_U <dbl>, TOT_F_U <dbl>, P_LIT_U <dbl>, M_LIT_U <dbl>, F_LIT_U <dbl>,
# scol <dbl>
The data constitute different measure of Sustainable Development Goals(SDG)
Data is for selected states for the year 2020-21 (30 states/union territories)
Source of the data is NITI Ayog and Census 2011
Main variables are
There are total 28 variables
library(ggrepel)
ggplot(gdata, aes(x=GER, y=FLFPR,label=States)) +
geom_point(aes(col=GDP1,size=CS))+
geom_label_repel(aes(label = States),
box.padding = 0.35,
point.padding = 0.5,
segment.color = 'grey50')+
labs(subtitle="FLFPR Vs GER",
y="Ratio of Female to Male LFPR",
x="Gross Enrollment Ratio",
title="Female Employment Vs Education",
caption = "Data Source: Niti Ayog")+
labs(size="Composite Score",col="Rank Categories")
[1] "tbl_df" "tbl" "data.frame"
# A tibble: 6 × 3
States TOTM TOTF
<chr> <dbl> <dbl>
1 Andhra Pradesh 42442146 42138631
2 Arunachal Pradesh 713912 669815
3 Assam 15939443 15266133
4 Bihar 54278157 49821295
5 Chandigarh 580663 474787
6 Chhattisgarh 12832895 12712303
melt
from reshape
package States variable value
1 Andhra Pradesh TOTM 42442146
2 Arunachal Pradesh TOTM 713912
3 Assam TOTM 15939443
4 Bihar TOTM 54278157
5 Chandigarh TOTM 580663
States variable value
54 Tamil Nadu TOTF 36009055
55 Telangana TOTF 1799541
56 Uttar Pradesh TOTF 95331831
57 Uttarakhand TOTF 4948519
58 West Bengal TOTF 44467088
Practice makes a man perfect 🏃